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ABSTRACT

Solar irradiance is a critical factor in estimating the electric power output of solar cells, which

plays a central role in energy management systems. Ensuring system stability requires accurate forecast-

ing of future energy generation. Therefore, solar irradiance forecasting is essential for effective energy

planning. This project investigates sky image datasets from Stanford University, the SIRTA research ob-

servatory, and Chulalongkorn University. The study involves training and evaluating three deep learning

models SUNSET, Unet, and SolarNet for forecasting solar irradiance up to 15 future timestamps (with

1–2 minute resolution), followed by model improvement. The preprocessing pipeline includes fisheye

distortion correction and region of interest (RoI) extraction from sky images, followed by cloud mask

generation. All three models were trained on the processed SIRTA dataset and additionally trained with a

cloud mask channel, specifically for SUNSET. Experimental results demonstrate that in forecasting task

the SUNSET model outperforms SolarNet across all three datasets, spanning over one year. Moreover,

incorporating the cloud mask channel improves the SUNSET forecast performance by approximately 3%

in RMSE from the original, but in terms of MAE, the addition of cloud mask and cloud foreground

channels did not lead to a significant improvement. This suggests that the benchmark system needs

to be further improved, as the current training and evaluation in this part can handle no more than 6

months of data due to high CPU RAM requirement. In conclusion, deep learning models can effectively

forecast solar irradiance using sky imagery and time-series data. Performance can be further enhanced

by integrating auxiliary data sources, such as cloud masks, into the model architecture.

Keywords : Solar forecasting, SUNSET model, SolarNet model, Unet model, Cloud masking
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Chapter 1

Introduction

1.1 Overview

A microgrid is a small-scale power system that integrates a power generation system, electrical loads,

and energy storage. Typically, a microgrid is connected to the main grid. Under normal conditions, a

microgrid will manage power generation and consumption appropriately. However, when a microgrid

enters islanding mode, a microgrid will rely on its own power generation system. Therefore, solar

irradiance forecasting is important for the stability of the system.

Although solar irradiance forecasting requires physical data such as altitude, solar angle, and air

mass to develop solar irradiance models [1], today deep learning has been applied to solar irradiance

forecasting. The neural networks used in deep learning have the ability to extract relevant features from

images such as satellite or sky images [2, 3]. This enables future development based primarily on image

data and solar irradiance values, reducing or even eliminating dependence on physical data [4]

Since sky images from different regions have a significant signature due to terrain and atmospheric

conditions. As a result, developing dedicated datasets for solar irradiance forecasting in Thailand is

essential. In the past, there are two senior projects, [5], that implemented a sky image data storage

system, and [6], which applied different deep learning methods in forecasting. However, these previous

studies did not attempt to compare other datasets, nor considered image pre-processing techniques

such as edge cropping and lens correction, which could improve the prediction accuracy [7]. In addition,

they did not extract additional information that could improve the effectiveness of neural networks,

such as [8] by using cloud mask, cloud foreground, and cloud coverage. Table 1.1 shows the difference

between these projects and ours.

1.2 Objectives

1. Analyze and examine the characteristics of three different datasets:

• CUEE [5] from Chulalongkorn University

• SKIPP’D [9] from Stanford University

• SIRTA [10] from SIRTA research observatory.

2. To evaluate the performance of deep learning-based solar irradiance forecasting, SUNSET [11],

Solarnet [4], and Unet [12], on the three datasets.

7
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Academic projects Senior Project [5] Senior Project [6] Our senior project

Built database YES NO NO

Datasets CUEE [5] CUEE [6] CUEE [5]

- - SKIPP’D, USA [9]

- - SIRTA, France [10]

Sky image enhancing - - RoI extraction

- - Len distortion correction

Sky image extraction Clear-sky irradiance - Clear-sky irradiance

- - Cloud extraction

- - Cloud marking

Solar irradiance

forecasting
SUNSET [11] SUNSET [11], Unet [12]

SUNSET [11], Solarnet [4],

Unet [12]

Table 1.1: Comparison between academic projects

3. Process and extract additional features, e.g., cloud volume, and cloud mask.

4. Gauge the impact of additional features from sky images on the SIRTA dataset and record any

challenges occurred during building the benchmarking system.

1.3 Scope of work

1. This study aims to examine the key characteristic of the tree datasets such as CUEE, SKIPP’D,

and SIRTA

2. This study aims to develop a short-term solar irradiance forecasting for 15 minutes ahead using

neural networks.

1.4 Expected outcomes

1. A survey of the standard sky image databases.

2. A system to train and benchmark the three neural networks on the three datasets.

3. An implementation for image preprocessing: RoI extraction and lens distortion correction.

4. Performance comparison on SUNSET, Solarnet, and Unet on SIRTA datasets with the prepro-

cessed sky images.

5. An implementation of the baseline and a new method* for extracting cloud volume and cloud

masking.

6. Performance of SUNSET on SIRTA datasets with additional features: cloud volume and cloud

masking.

∗ denotes an extra milestone achieved in this project.
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1.5 Engineering knowledge

1. Deep learning and neural networks.

2. Image processing.

3. Time-series analysis.

4. Object-oriented programming



Chapter 2

Literature review

This chapter will provide foundations to our proposed method. The topics in this chapter include RoI

selection, lens distortion correction, a sky condition classification, cloud cover extraction, and the neural

networks considered in this work.

• A fish eye lens is a type of lens that has a very short focal length, so the image from this lens

would be circular and can capture a lot of surrounding information compared to other types of

lenses, such as wide-angle lenses and standard DSLR lenses. The resulting images often include

unwanted objects. Therefore, it is necessary to crop the edges to keep only the region of interest

(RoI). Additionally, the objects in the image are distorted due to the short focal length. According

to photography principles, these distortions should be corrected. The RoI selection and distortion

correction will be discussed in section 2.1 and section 2.2.

• When using a fish-eye lens to capture sky images, cloud density and sun position are key fac-

tors in forecasting solar irradiance. Cloud coverage from sky images can be an indicator of sky

conditions under different climates, which is related to solar irradiance. This chapter will explore

a classification model using solar irradiance in section 2.3 as well as cloud cover extraction in

section 2.4.

• Furthermore, the neural network foundation and the benchmarking architectures for solar irradi-

ance forecasting, Solarnet, U-Net, and SUNSET, will be presented in section 2.5 and section 2.7,

respectively. Finally, we will explore the potential of using a generative-based neural network such

as a Generative Omnimatte to extract the cloud mist and the cloud mask in section 2.8.

2.1 Region of interest

Region of interest (RoI) is a specific part of an image that we want to carve out. Extracting an RoI

can be done by defining a boundary around the desired area, such as a circular or rectangular frame,

to separate the target region from the rest of the image. The extracted portion can then be further

processed according to the method [13]. Figure 2.1 provides an example of resulting images contain only

the area within a pre-defined frame, while the outer regions, such as the edges, are filtered out.

10
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(a) Before ROI extraction (b) After ROI extraction

Figure 2.1: Example of sky images before and after ROI extraction

2.2 Lens distortion correction

Capturing images with a fisheye lens results in barrel distortion, causing data at the edges of the

image to be compressed and appear smaller than their actual size. However, data near the center of the

image are enlarged beyond its true proportions. This distortion negatively impacts image processing for

accurately estimating cloud coverage. Therefore, a correction method from [7] is applied, which estab-

lishes a relationship between the real image and its corresponding representation in polar coordinates.

This relationship is given by the following equation.ρ cos θ

ρ sin θ

h

 = γ(s)

 2

Rm

 s cos θ

s sin θ√
R2

m − s2

−

0

0

1

+

 s cos θ

s sin θ√
R2

m − s2


 (2.1)

The left-hand side of the above equation corresponds to the object in real-world (3D coordinates), where

ρ is the real-world radial distance and h is the real-world height. Meanwhile, the right-hand side of the

above equation corresponds to the object appearing in an image (2D coordinates). s is the apparent

radial distance in the image. R is the radius of the fisheye lens. γ(s) is the distance between the fisheye

lens center and a given point, defined as γ(s) = ∥Xc − P∥, where Xc represents the position of the

lens.

In practice, we only adjust the value of ρ̃, which represents the field of view of the image we are

interested in. It can be calculated using the following equation.

ρ̃ =
ρ

h
=

2s

2
√
Rm

2 − s2 −Rm

(2.2)

2.3 Sky condition classification with solar irradiance

Research [14] classifies cloud coverage levels into three categories: Clear representing a clear sky;

Partly cloudy represents partial cloud coverage; and Cloudy represents significant cloud coverage.

This classification is based on the daily average clear sky index, which indicates the impact of actual

sky conditions, e.g., clouds, and haze on solar irradiance. The clear sky index can be calculated using

the following equation:

k =
I

Iclr
, (2.3)
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where I is measured solar irradiance, in units of Watt/m2, and Iclr is clear sky irradiance. Clear sky

irradiance is the amount of solar radiation that reaches the Earth’s surface under clear, cloudless, and

aerosol-free conditions, which are essential for calculating the clear sky index. However, measuring solar

irradiance with instruments such as pyranometers may not always reflect true clear sky conditions due to

interference from factors such as aerosols, smoke, and atmospheric moisture. Therefore, the work [14]

used a calculation model developed by [15]

Figure 2.2: Flowchart representing cloud condition classification using clear sky index

2.4 Cloud cover extraction from sky images

The cloud cover extraction proposed in [16] determines cloud cover from sky images. Due to the

similarity between the sun and the nearby cloud that can appear as white in RGB images, the method

will first track the sun’s location and remove the effect of the sun. Then, the normalized red-blue

ratio (NRBR) is used to calculate the clarity of the sky. The clear sky library (CSL) is then used as

a mechanism to compare the clarity of the sky with the clear-sky days in the database to justify the

cloudiness level.

2.4.1 Tracking sun position

Accurate sun positioning enhances cloud extraction from sky images. This is achieved using principles

and methods from [16], which involve identifying the sun’s position in polar coordinates and then

converting it to Cartesian coordinates via linear relationships, as defined by the equations:

x∗ = Ox − ρ sin θ (2.4)
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y∗ = Oy + ρ cos θ (2.5)

where x∗ is the position of the sun along the x-axis in the image (b). y∗ is the position of the sun along

the y-axis in image (b). O is center of the image from the camera. ρ is the distance between the center

of the image from the camera and the position of the sun in the image. θ = ξ − δ+90◦ where ξ, δ are

functions derived from Da Rosa’s observations [17].

(a) Sun Angle Flowchart

(b) Sky image coordinates

(c) Sun Position Determination Process

Figure 2.3: Method for sun position calculation (source: [16] image by: Yuhao Nie)

2.4.2 Cloud cover extraction

Since the irradiance values we obtain are directly affected by the amount or density of clouds in the

sky, the method [16] utilizes and leverages the concept of NRBR [18] and CSL [16] as follows:

• The normalized red-blue ratio (NRBR) [18] is the ratio of the difference between R and B, which

are the pixel values in the red and blue channels, respectively. NRBR can be calculated as follows:

NRBR =
B −R

B +R
(2.6)

The clear sky appears blue with high NRBR values, whereas the cloud appears white or gray

with low NRBR values. This method works well when the sun is completely obscured by clouds.

However, the results are inaccurate when the sky is clear, or the sun is partially obscured because

it cannot distinguish between the sun and clouds.

• Clear sky library (CSL) [16] compares the NRBR values between the day of interest and a clear sky

day. The NRBR values of clear sky days are stored in a database beforehand. CSL detects clouds

when the NRBR values of the two images differ by more than a specified threshold. This helps

reduce the problem of detecting the sun in images without cloud cover. However, it encounters

issues in images where clouds obscure the sun, as it cannot detect clouds that are directly over

the sun.
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Figure 2.4: Cloud cover extraction method proposed in [16]

2.5 Solar irradiance forecasting with deep learning

In the application of solar irradiance forecasting using deep learning, the neural network is viewed as

a function of parameters. This model takes sky images as input and provides solar irradiance values as

output, which can be represented by the following equation:

y = f(x; θ) (2.7)

where x is sky images inputs; y is solar irradiance input; and f(·; θ) is a function of parameters that

represents the neural network, where θ represents the set of all parameters in that network.

Generally, solar irradiance forecasting using deep learning consists of two components: (i) the

learning phase, where a deep neural network is trained for solar irradiance forecasting and (ii) the

inference phase, where the trained neural network is deployed for solar irradiance forecasting. The

training of the neural network dictates the approach used for solar irradiance forecasting. Meanwhile,

the neural network architecture is modified to achieve results consistent with the learning and forecasting

objectives.
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2.6 Learning for solar irradiance forecasting

The learning for solar irradiance forecasting can be formulated as an optimization problem to find the

optimal parameters θ. Let loss(·, ·) be the function that measures the loss between the predicted values

from f(·; θ) and the reference solar irradiance (denoted as y). The optimal parameters are found by

dividing the data into batches. If each batch contains b data samples (xi, yi), the optimization problem

for finding the optimal parameters θ can be written as:

θ̂ = argmin
θ

1

b

b∑
i=1

loss(f(xi; θ), yi) (2.8)

Generally, two forms of loss(·, ·) functions are used to measure the loss in irradiance forecasting :

• Absolute error loss (AE), where loss(ŷ, y) = |ŷ − y|

• Square error loss (SE), where loss(ŷ, y) = (ŷ − y)2

The loss(·, ·) function corresponds to the method used to measure solar irradiance forecast perfor-

mance (as in eq. (4.1) and eq. (4.2) in section 4.3). Furthermore, as seen in eq. (2.8), training a deep

neural network for forecasting requires creating a database with (i) reference irradiance data and (ii)

sky images for deep network training. However, recent research has been explored using other reference

data, such as cloud detection masks [8] and future cloud movement [12], or adding input data such

as satellite images [3], to provide the neural network with more comprehensive spatial information.

2.7 Solar irradiance inference

This section will discuss three neural network architectures, namely SUNSET, Unet, and Solarnet, which

have been used as benchmarks in recent research articles [2, 8, 19, 12, 20]. These neural networks share

some similar components: input layer, hidden layer, and output layer, which is structured according

to human information processing and can be adapted and applied to various operational scenarios.

Typically, each layer consists of processing units, or neurons, which are interconnected to form the

neural network, as shown in Figure 2.5.

(a) Neuron (b) Neural network

Figure 2.5: Neuron and neural network

Generally, each neuron has the following components:

• Input layer. The layer receives the input data into the neural network for learning and inference.
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• Weight. The weight in hidden layers is the primary set of parameters to derive semantic infor-

mation from input data. This information is passed through weights in each layer of the neural

network, forming latent features.

• Bias. The bias in hidden layers are parameters that help shift the weighted sum, often included

to help the activation function work more easily.

• Dropout. The dropout layer determines whether to activate this neuron or not, randomly based

on a set probability of activation.

• Activation function. The activation function is a non-linear function that maps the latent feature

to the output values. It is typically used to constrain the output values to a suitable range (based

on the task), such as values between 0 and 1.

2.7.1 SUNSET

SUNSET [11] is a neural network with a convolutional neural network (CNN) architecture specifically

designed to use multiple consecutive convolution layers for extracting two-dimensional information, as

shown in Figure 2.6. SUNSET takes a set of images as sequential input and passes them to pooling

layers that are connected consecutively. Subsequently, it is forwarded to fully connected layers to perform

the prediction of the irradiance value.

Figure 2.6: SUNSET network architecture (source: [11] image by: Yuchi Sun)
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2.7.2 Unet

Unet is a neural network composed of an encoder, bottleneck, and decoder as shown in Figure 2.7.

An encoder is responsible for extracting information from the input image. It uses Convolutional layers

and Pooling layers to extract features from the image. This information is then passed on to an encoder

with lower resolution, and also to the decoder at the same resolution level through skip connections.

Bottleneck acts as an intermediary between the encoder and the decoder to transmit information.

Internally, it consists of convolutional layers and an activation function. A decoder takes the encoder

features that have been encoded and transforms them back into an image and into the desired output.

At each step, the resolution of the image is increased.

Figure 2.7: Unet architecture [12]

2.7.3 Solarnet

Solarnet is a neural network architecture developed based on VGG16, made up of a total of 20

sequential layers as shown in Figure 2.8. These layers include 13 Convolutional layers, 5 Pooling layers,

and 2 remaining dense layers that conclude with a Linear activation function. In the original VGG16

architecture, the final three layers are dense layers followed by a ReLU activation function. Also, Solarnet

only accepts images as input and does not take solar irradiance values or other feature data as additional

input.

Figure 2.8: VGG16 architecture [4]
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2.8 Generative omnimatte

Omnimatte [21] is a task that aims to decompose video input into matte layers that contain individual

objects along with their associated effects, such as shadows and reflections. To lay the foundation of

an omnimatte task, we include the meaning of the following important variables:

Suppose that an input video consists of n objects that can be decomposed into n matte layers. For

i = 1, ..., n ...

• Ii,fg is the ith matte layer consisting of each foreground object (and its associated effects);

• αi is the object mask of the ith matte layer; and

• Ibg is the clean plate background;

Omnimatte neural network is Unet-based neural network, that is used to perform the omnimatte

task, where, originally, the training of omnimatte requires a static background and depth estimation [21].

However, a recent work [22] proposed a generative omnimatte that circumvents these requirements by

using Casper, a text-to-image generation to create static background and objects. This supports the

removal of scene effects caused by specific objects, as shown in Figure 2.9.

Figure 2.9: Generative omnimatte framework (source: [22] image by: Lee, Yao-Chih and Lu)

2.9 Learning for omnimatte task

The generative omnimate neural network aims to produce the following output:

Oi := {Ii,fg, αi}, (2.9)

which is a set of the foreground object Ii,fg and the object mask αi. Then, the omnimatte neural network

will be trained to learn the following composition of foreground layer, mask layer, and background layer,

to resemble the solo video Ii [22]:

Comp(Ibg, Ii,fg, αi) = αiIi,fg + (1− α)Ibg ≈ Ii, (2.10)
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To achieve the learning objective, the learning loss is the combination of the loss functions:

Lrecon + λsparsityLsparsity + λmaskLmask. (2.11)

Each of these loss terms is defined as follows.

• Reconstruction loss (Lrecon) is used to enforce the resemblance between the solo video and the

composition of the foreground layer, the mask layer and the background layer:

Lrecon = ||Ii − Comp(Ibg, Ii, αi)||2 (2.12)

• Sparsity loss (Lsparsity), which is used to prevent the object mask from being overly sensitive to

the reconstruction error:

Lsparsity = β1||αi||1 + β0Φ0(αi) (2.13)

• Mask loss Lmask, which is used to guide the object mask αi to match the ground truth mask mi:

Lmask = ||mi − αi||2 (2.14)
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Methodology

We proceed with the following steps to achieve all the milestones in this project:

• Data exploratory on SUNSET, Solarnet, Unet datasets

• Image processing techniques, region of interest (RoI) extraction and lens distortion correction,

to improve the quality of sky images

• Cloud mask and cloud foreground extraction using a baseline method. The method [16] is

used to provide the cloud mask, which is then used to select the cloud foreground.

• Cloud mask and cloud foreground extraction using a generative omnimatte. The settings

and training of generative omnimatte are modified for cloud mask and cloud foreground extraction.

• Training with baseline settings. We train SUNSET, Unet, and Solarnet for solar irradiance

forecasting on CUEE, SIRTA, and SKIPP’D datasets.

• Training with image processing techniques. We train SUNSET, Unet, and Solarnet using

SIRTA data that have been processed with RoI and lens distortion correction.

• Training with cloud mask and cloud foreground. Train SUNSET using the SIRTA data with

cloud mask and cloud foreground data.

3.1 Data exploratory

This study focuses on three datasets, namely CUEE, SKIPP’D, and SIRTA, as shown in Table 3.1

• CUEE contact project owner [5]

• SKIPP’D dowload from https://purl.stanford.edu/dj417rh1007

• SIRTA authorized via https://sirta.ipsl.fr/data-request/

The explored information on three datasets is provided in Table 3.1.

20
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Details CUEE SKIPP’D SIRTA

research center Chulalongkorn University Stanford University SIRTA

Location Bangkok Stanford Palaiseau

Country Thailand USA France

Input data Sky image Sky image Sky image

Reference data Solar irradiance Electrical power Solar irradiance

Data collection period 1/2023 -11/2023 03/2017 - 10/2019 01/2012 - 11/2024

Data study period 1/2023 -11/2023 03/2017 - 10/2019 01/2023 - 12/2023

Number of data 82,327 135,527 102,846

Data splitting 60:20:20 84:9:7 60:20:20

Resolution 1 minute 1 minute 2 minutes

Input data previous 15 sample previous 15 sample previous 15 sample

forecasting data 15 minutes ahead 15 minutes ahead 30 minutes ahead

Table 3.1: Database detail

3.2 Image processing to improve the quality of sky images

Region of interest (RoI) and lens distortion correction, the image processing techniques discussed in

section 2.1 and section 2.2, are used to improve image quality, which are the inputs to solar irradiance

forecasting.

• An example result from RoI extraction on SIRTA data is shown in Figure 3.1.

Figure 3.1: Example of RoI image (SIRTA).

• Fisheye lens distortion correction on the SKIPP’D and SIRTA data using different
∼
ρ values. An

example result is shown in Figure 3.2

Figure 3.2: Example of distortion corrected image (SIRTA).
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The results of solar irradiance forecasting on the three datasets where the sky images that have been

corrected by applying RoI and lens distortion correction are provided in section 4.3.2 .

3.3 Cloud mask and foreground extraction

This study performed the cloud mask and cloud foreground extraction on SIRTA sky images to improve

the performance of the model. We explored the following approaches:

• Cloud mask extraction from the baseline method [16];

• Cloud foreground extraction by extending [16];

• Cloud extraction using generative omnimatte neural network [22];

• Cloud foreground extraction using generative omnimatte neural network [22].

3.3.1 Cloud mask extraction with the baseline method

Cloud mask extraction [16] is a deterministic method that performs cloud mask extraction via color

thresholding NRBR and sky image database comparison CSL. Figure 3.3 provides an example result

from the cloud mask extraction. The parameters used to extract RoI and masking cloud algorithm

(discussed in section 2.4.2) on the SIRTA dataset where the image resolution was 64 × 64 is provided

in Table 3.2. The minimum NEBR threshold of 0.15 is used for both NRBRoutside and NRBRoriginal.

Figure 3.3: Example of cloud mask extracted by [16]

Parameters Description SIRTA

Origin X The center of the image along the x-axis. 31.5

Origin Y The center of the image along the y-axis. 31.5

Radius The distance from the center to the edge of the lens within the image. 27

Table 3.2: Cloud masking parameters setting on SIRTA dataset

3.3.2 Cloud foreground extraction by extending [16]

The method [16] is extended to extract the cloud foreground, which could be useful in deriving the solar

irradiance forecast. The extension involves multiplying the sky image with the cloud masking channel

and then applying it on top of the clear-sky image. The result is shown in Figure 3.4.
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Figure 3.4: A sample of overlaying cloud foreground on a clear-sky image

3.4 Cloud mask and foreground extraction using generative omnimatte

Cloud cover extraction in section 2.4.2 provides a hard decision for cloud mask {0, 1}. However,

naturally clouds have a thickness and can form a mist shape in sky images. In this section, our aim is

to extend the binary could mask as a grayscale output [0, 1].

To achieve this soft decision, we explore the generative Omnimatte approach [22] to decompose the

sky image into layers of cloud, sky, and sun. The generative omnimatte model along with its associated

loss functions is adjusted to extract the cloud from sky images. Specifically, an input sky image is seen

as a composition of cloud foreground, soft decision mask, and a clear-sky image. We assign the notation

to each component as follows:

• Ifg is cloud foreground;

• α is a soft decision mask;

• Ibg is a clear-sky image.

3.4.1 Learning phase

To achieve our specific output, we further adjusted certain aspects of their original model architecture

and loss function. We adjust the losses from eq. (2.11) including Lrecon, Lmask, Lsparsity along with

their respective weighting factors λmask, λsparsity.

Lrecon serves as the main loss function to guide the neural network in learning the cloud cover-

age. Specifically, Lrecon is implemented as a mean squared error (MSE) loss calculated between two

components: the reconstructed image Irecon and the original sky image.

Irecon ≈ I = Icloud + (1− α)Ibg︸ ︷︷ ︸
Imasked,bg

(3.1)

where Icloud provides the new design option when generating the reconstructed image:

• Comb-off option. In this option, we follow the traditional foreground image definition, which is

the cloud foreground multiplied by the predicted soft-decision mask αi. :

Icloud = αiIfg (3.2)

Figure 3.5 provides an example of how Irecon can be derived from αi, Ifg, Ibg in our settings.

• Comb-on option. The cloud foreground Ifg is first combined with the clear sky image Ibg, and
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then the result is multiplied by the predicted soft-decision mask αi:

Icloud = αi(Ifg + Ibg) (3.3)

Our learning still includes Lmask and Lsparsity. These loss functions are necessary in our context in the

following aspects:

• Lmask is used to supervise the prediction of cloud mask, encouraging it to align closely with the

ground-truth mask from cloud detection method [16]. We use same formula eq. (2.14).

• Lsparsity is loss that encourages the predicted cloud mask to be sparse. This loss is important

because it helps reduce the reliance on the ground-truth binary mask that cannot capture the mist

and tends to overly simplify the captured cloud. Lsparsity encourages the network outputs to have

high values in some regions where clouds are actually present and remain close to zero elsewhere.

The formula is the same as eq. (2.13).

Figure 3.5: Flowchart representing reconstructed image process (option comb-off)
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3.4.2 Clear-sky image generation

The clear-sky image Ibg is generated using a text-to-image generation [23], which is an extension of a

denoising diffusion probabilistic model [24] to receive the input text as the condition for image generation.

To generate a sky images, we provide the following text inputs to the model, which is

{hour,minute, day of year, cloud coverage, clear sky irradiance, solar irradiance} (3.4)

where cloud coverage is obtained from [25], which is the cloud coverage estimated using Elifan algo-

rithm [26]. The clear sky irradiance is obtained from the Ineichen and Perez clear sky model in terms

of the Linke turbidity [27, 28]. The solar irradiance is obtained from the SIRTA dataset [10]. During

deployment, cloud coverage is set to 5% and the solar irradiance is set to clear sky irradiance +20.

Figure 3.6 provide the example of actual sky images and generated clear sky images.

Actual image:

(a.1) 10:30 (b.1) 12:12 (c.1) 16:40

Gen. sky image:

(a.2) 10:30 (b.2) 12:12 (c.2) 16:40

Figure 3.6: Examples of actual sky images and generated clear sky images on 29 Jan 2023 at 10:00
(a.1)-(a.2); 12:00 (b.1)-(b.2) ; and 16:00 (c.1)-(c.2).

3.5 Hyperparameter settings for generative omnimatte

We follow the parameter tuning steps guided by generative omnimate [22]. The training process began

with a base model, which was optimized to provide the prediction of soft-decision mask α. This

is achieved using only the mask loss Lmask and sparsity loss Lsparsity. Once the network achieved

stable performance in learning the cloud masks, a transferred learning is performed by employing the

reconstruction loss Lrecon in addition to the previous two losses. Table 3.3 provides the settings for each

training.

3.6 Hyperparameter settings for solar irradiance forecasting

This study trains SUNSET, Unet, and Solarnet on 3 datasets such as CUEE, SKIPP’D, and SIRTA

to find the best parameter setting as follows:

• Learning rate. the step size that determines how much the neural network’s weights are adjusted

during training.
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Parameters Base Model Transferred Model

Loss function Lmask, Lsparsity Lrecon, Lmask, Lsparsity

αmask 0.001 0.001

αsparsity 0.001 0.001

αrecon - 1

Learning rate 0.0001 0.0001

Comb - Yes, No

Table 3.3: U-net based neural network hyperparameter

• Batch size. the number of data samples used in one iteration of training the model.

• Drop rate. the probability of deactivating neurons to prevent overfitting.

• Dense size. the number of neurons in a dense (fully connected) layer.

• Div num filter.a divisor used to determine the number of parameters in hidden layers of a deep

learning model.

• Loss function. a function that calculates the error of the model, which the model optimizes to

minimize during training.

• Max epoch. the maximum number of iterations over the entire dataset during training.

• Early stop epoch. The number of consecutive epochs without improvement in the loss function,

after which training is stopped to prevent overfitting.

3.6.1 SUNSET

Varying 24 SUNSET parameters for solar irradiance forecasting using 15 lagged sky images and irradi-

ance data as inputs on the CUEE, SKIPP’D, and SIRTA datasets. Table 3.4 provides the hyperparameter

settings for SUNSET.

Parameters CUEE SKIPP’D SIRTA

Learning rate 0.001 0.000003 0.001

Batch size 512 128 64

Drop rate 0.001 0.4 0.001

Dense size 64, 128, 256, 1024 64, 128, 256, 1024 64, 128, 256, 1024

Div num filter 1, 2, 4 1, 2, 4 1, 2, 4

Loss function AE, SE AE, SE AE, SE

Max epochs 200 200 200

Early stop epochs 10 10 10

Table 3.4: SUNSET hyperparameters varying on the CUEE, SKIPP’D, and SIRTA datasets
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3.6.2 Unet

Varying with 18 Unet parameters to predict solar irradiance from sky image on the CUEE, SKIPP’D,

and SIRTA datasets. Table 3.5 provides the hyperparameter settings for Unet.

Parameters CUEE SKIPP’D SIRTA

Learning rate 0.001 0.0001 0.0001

Batch size 128, 256, 512 128, 256, 512 128, 256, 512

Drop rate 0.001, 0.1, 0.4 0.001, 0.1, 0.4 0.001, 0.1, 0.4

Loss function AE, SE AE, SE AE, SE

Max epochs 200 200 200

Early stop epochs 10 5 5

Table 3.5: Unet hyperparameters varying on the CUEE, SKIPP’D, and SIRTA datasets

3.6.3 Solarnet

Varying 30 Solarnet parameters for solar irradiance forecasting using 15 lagged sky images as inputs

on the CUEE, SKIPP’D, and SIRTA datasets. Table 3.6 provides the hyperparameter settings.

Parameters CUEE SKIPP’D SIRTA

Learning rate 0.00001 0.0001 0.0001

Batch size 16, 64, 128 16, 64, 128 16, 64, 128

Drop rate 0.001 0.001 0.001

Number of layers 0, 1, 2, 3, 4 0, 1, 2, 3, 4 0, 1, 2, 3, 4

Loss function AE, SE AE, SE AE, SE

Max epochs 200 200 200

Early stop epochs 10 5 5

Table 3.6: Solarnet hyperparameters varying on the CUEE, SKIPP’D, and SIRTA datasets
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3.7 Hyperparameter settings for training with processed data

This study enhances sky images by performing RoI extraction and distortion correction on the SKIPP’D

and SIRTA datasets and trains SUNSET, Solarnet, and U-Net on the processed SIRTA data with the

hyperparameters provided in Table 3.7.

Parameters SUNSET Solarnet Unet

Learning rate 0.001 0.0001 0.0001

Batch size 64 16 128

Drop rate 0.001 0.001 0.001, 0.1, 0.4

Dense size 1024 - -

Div num filter 1, 2, 4 - -

Number of layers - 0, 1, 2, 3, 4 -

Loss function AE, SE AE, SE AE, SE

Max epochs 200 100 200

Early stop epochs 10 5 5

Table 3.7: SUNSET, Solarnet, and Unet hyperparameters varying on the SIRTA processed data

3.8 Training of solar irradiance forecasting with cloud mask and fore-

ground and hyperparameter settings

This study aims to enhance the model performance by extracting additional features from sky images,

specifically cloud masks. SUNSET model was trained using the first six months of the SIRTA dataset,

incorporating an additional cloud mask channel from [16] and generative omnimatte eq. (3.3).

• Experiment 1 : adding 1 channel of cloud mask from section 3.3.1.

• Experiment 2 : adding 3 channels of cloud foreground from section 3.3.2.

• Experiment 3 : adding 1 channel of soft-decision mask α from comb-on eq. (3.3).

• Experiment 4 : adding 3 channels of cloud foreground Icloud from the comb-on eq. (3.3).

These experiments were conducted to improve model performance, utilizing consistent hyperparam-

eters across all experiments. Learning rate = 0.001, batch size = 64, drop rate = 0.001, dense size =

1024, div num filder = 1, loss function = AE/SE, max epochs = 200, early stop epochs = 10.
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Results and discussion

4.1 Dataset analysis

SKIPP’D, CUEE, and SIRTA comprise sky images along with the corresponding solar irradiance or

photovoltaic (PV) measurements, each collected from distinct geographical locations. They exhibit

unique characteristics in terms of data acquisition methods, temporal resolution, data distribution, and

other factors, as detailed in Table 4.1 and Figure 4.1.

Dataset SKIPP’D CUEE SIRTA

Camera Model DS-2CD6365G0E-IVS DS-2CD1021G0-I EKO SRF-02

Resolution 64 × 64 1920 x 1080 64 × 64

Lens Type Auto focus lens DSLR lens Auto focus lens

Capture Interval 1 minute 1 minute 1-2 minute

Start Date 09/03/2017 15/03/2023 01/01/2023

End Date 26/10/2019 03/11/2023 31/12/2023

Start Time 06:00 06:00 05:00

End Time Not over 20:00 18:00 Not over 22:00

Table 4.1: Data properties

(a) SKIPP’D [KW] (b) CUEE [Watt/m2] (c) SIRTA [Watt/m2]

Figure 4.1: Distribution of solar irradiance [Watt/m2] and PV [KW]

From Figure 4.1, three datasets SKIPP’D, CUEE, and SIRTA exhibit distinct distributions of solar

29
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irradiance or PV output. SKIPP’D shows a stable and narrow distribution with low variability, suggesting

clear sky conditions and consistent output throughout the day. CUEE presents moderate variability with

slightly wider uncertainty bands, indicating more dynamic weather patterns. SIRTA exhibits the highest

variability and the widest spread, likely due to complex environmental factors or urban influences. In

general, SKIPP’D provides the most stable profile for modeling, while SIRTA offers a more challenging

dataset to evaluate model robustness under uncertain conditions.

4.2 Generative omnimatte results

4.2.1 Cloud mask and cloud foreground extraction

Base model was trained using the mask loss and sparsity loss. It is capable of generating cloud masks;

however, the grayscale accuracy remains limited. In particular, when thin clouds are present, the model

often predicts values close to one (highest value) across the region as in Figure 4.2.

(a) Sky image (b) Cloud mask

Figure 4.2: Cloud extraction with based model on SIRTA dataset

Comb-off model is a model transferred from the base model and is trained using the reconstruction

loss (Lrecon) in addition to the masking and sparsity loss. In this version, the predicted mask is applied

directly to the cloud foreground to compute the reconstructed image (eq. (3.2)). This model improves

grayscale performance by allowing the network to better distinguish between different cloud densities.

It marks a significant improvement over the base model, especially in detecting thinner clouds more

accurately. The example results are shown in Figure 4.3.

(a) Sky image (b) Clear sky image (c) Cloud mask (d) Cloud foreground

Figure 4.3: Cloud extraction with comb-off model on SIRTA dataset

Comb-on model also uses Lrecon, but with a different reconstruction method. Before applying the

predicted mask, the cloud foreground is first combined with the clear-sky image (eq. (3.3)). This allows

the network to distinguish between actual cloud regions and bright areas caused by sunlight. By including

the clear sky image in the reconstruction process, the model is encouraged to circumvent the sunlight

effect and avoid mistakenly labeling the sun as a cloud. The example results are shown in Figure 4.4.
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(a) Sky image (b) Clear sky image (c) Cloud mask (d) Cloud foreground

Figure 4.4: Cloud extraction with comb-on model on SIRTA dataset

4.2.2 Quality of the cloud image reconstruction

PSNR of reconstructed image with baseline method

Sky image Cloud mask Reconstructed image
Cloud cover: 0.61 PSNR: 24.92

PSNR of reconstructed images with comb-off model

Sky image Cloud mask Reconstructed image
Cloud cover: 0.51 PSNR: 28.11

PSNR of reconstructed images with comb-on model

Sky image Cloud mask Reconstructed image
Cloud cover: 0.54 PSNR: 27.52

Figure 4.5: PSNR of reconstructed images between baseline, comb-off, and comb-on models

This section compares the cloud image reconstruction results from generative omnimattes, both

comb-on and comb-off models. This is to ensure that the training of generative omnimattes are achieving

the desired goal. For generative omnimattes, the reconstructed cloud image is obtained by eq. (3.1).

Then, the PSNR is calculated with respect to the sky image. These results are compared with the

image reconstructed by baseline detection [16], which is defined in a similar manner, but α is a hard

decision cloud mask. Figure 4.5 and Figure 4.6 provides the example results. The baseline detection [16]

provides a clean reconstruction result in Figure 4.5; however, this is not the case in Figure 4.6. The

image reconstructed by the baseline detection is overly simplified and does not capture the mist in the

cloud. Meanwhile, reconstruction by generative omnimattes, both comb-on and comb-off models, can

capture the mist in both Figure 4.5 and Figure 4.6.
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PSNR of reconstructed images with baseline method

Sky image Cloud mask Reconstructed image
Cloud cover: 0.28 PSNR: 19.39

PSNR of reconstructed images with comb-off model

Sky image Cloud mask Reconstructed image
Cloud cover: 0.33 PSNR: 32.33

PSNR of reconstructed images with comb-on model

Sky image Cloud mask Reconstructed image
Cloud cover: 0.39 PSNR: 31.93

Figure 4.6: PSNR of reconstructed images between baseline, comb-off, and comb-on models

4.2.3 Quality of the predicted soft-decision mask

This section studies the quality of soft-decision cloud masks by generative omnimatte. Performance

was validated by the correlation between the soft decision cloud mask with respect to two ground-truth

binary cloud coverages, which are the cloud coverage of the Elifan dataset and the baseline method [16],

as seen in Figure 4.7. The comparison indicates that both the comb-on and comb-off models perform

similarly in generating cloud masks. However, the comb-on model was chosen for further exploration,

since it can separate sunlight from cloud regions.

4.3 Model performance

The evaluation of model performance will involve the measurement of error according to two metrics.

• Mean absolute error (MAE)

MAE =
1

n

n∑
i=1

|yi − ŷi| (4.1)

• Root mean square error (RMSE)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)
2 (4.2)

where n is the total number of data points.
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(a) Comb-on model vs. [16] (b) Comb-off model vs. [16]

(c) Comb-on model vs. Elifan (d) Comb-off model vs. Elifan

Figure 4.7: Correlation between the cloud mask of generative omnimatte versus two baselines: [16]
and Elifan dataset. Correlation wrt. [16] are (a-b): (a) comb-on model, (b) comb-off model; and
Correlation wrt. Elifan (c-d): (c) comb-on model, (d) comb-off model.

The performance comparison of the models in forecasting solar irradiance for the next 15 minutes

is shown in the following table. The parameters for the SUNSET, Solarnet, and Unet models were

adjusted to find the parameters that resulted in the most accurate predictions on validation as measured

by MAE and RMSE.

4.3.1 SUNSET, Solarnet, and Unet benchmarks

Validation dataset

This section reports the performance of SUNSET, Solarnet, and Unet on the validation datasets of

CUEE, SKIPP’D, and SIRTA. The results are provided in Table 4.2-Table 4.4. The table confirms the

lowest possible error that leads to the best model selection, which will be used in evaluation of testing

dataset in the next section.

Model Learning loss. Parameter setting Model parameters Train on AE Train on SE

MAE RMSE MAE RMSE

SUNSET MAE Dense Size: 128, Div num filter: 1 3227185 102.00 160.26 - -

RMSE Dense Size: 256, Div num filter: 1 6424497 - - 103.98 155.04

Unet MAE Batch Size: 128, Drop rate: 0.4 306120 65.27 106.54 - -

RMSE Batch Size: 256, Drop rate: 0.1 306120 - - 66.19 109.32

Solarnet MAE Batch Size:64, Num layer: 3 7790098 127.50 178.41 - -

RMSE Batch Size:16, Num layer: 4 14867974 - - 129.35 172.27

Table 4.2: Performance on CUEE validation dataset with the lowest error in [Watt/m2].
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Model Learning loss. Parameter setting Model parameters Train on AE Train on SE

MAE RMSE MAE RMSE

SUNSET MAE Dense Size: 1024, Div num filter: 1 26296497 1.57 2.82 - -

RMSE Dense Size: 1024, Div num filter: 2 13671897 - - 1.66 2.73

Unet MAE Batch Size: 128, Drop rate: 0.1 306120 1.12 2.06 - -

RMSE Batch Size: 128, Drop rate: 0.4 306120 - - 1.21 2.08

Solarnet MAE Batch Size: 16, Num layer: 4 14867974 1.78 3.00 - -

RMSE Batch Size: 16, Num layer: 4 14867974 - - 1.91 2.94

Table 4.3: Performance on SKIPP’D validation dataset with the lowest error in [KW].

Model Learning loss. Parameter setting Model parameters Train on AE Train on SE

MAE RMSE MAE RMSE

SUNSET MAE Dense Size: 1024, Div num filter: 1 26296497 39.13 81.97 - -

RMSE Dense Size: 1024, Div num filter: 4 7367373 - - 45.61 85.91

Unet MAE Batch Size: 128, Drop rate: 0.4 306120 25.31 44.36 - -

RMSE Batch Size: 128, Drop rate: 0.4 306120 - - 25.41 43.04

Solarnet MAE Batch Size: 64, Num layer: 4 14867974 72.86 120.15 - -

RMSE Batch Size: 16, Num layer: 4 14867974 - - 65.31 105.05

Table 4.4: Performance on SIRTA validation dataset with the lowest error in [Watt/m2].

Test dataset

The results demonstrate that the SUNSET model significantly outperforms the Solarnet model in the

forecasting task across all three datasets. The results are provided in Table 4.5-Table 4.7. This perfor-

mance advantage is primarily due to SUNSET’s ability to utilize both sky images and time series data

as input, whereas Solarnet relies solely on sky images.

In contrast, for the regression task, the Unet model achieves the lowest loss. This outcome is

expected, as Unet predicts the irradiance at the current timestamp t, rather than forecasting it 15

minutes ahead, which inherently reduces the complexity of the prediction.

Figure 4.8 and Figure 4.9 provide the example of the result comparison between the predicted value

versus the ground truth on CUEE and SKIPP’D, respectively.

Model Learning loss. Parameter setting Model parameters Train on AE Train on SE

MAE RMSE MAE RMSE

SUNSET MAE Dense Size: 128, Div num filter: 1 3227185 92.06 152.52 - -

RMSE Dense Size: 256, Div num filter: 1 6424497 - - 94.39 146.86

Unet MAE Batch Size: 128, Drop rate: 0.4 306120 62.45 102.42 - -

RMSE Batch Size: 256, Drop rate: 0.1 306120 - - 62.12 95.95

Solarnet MAE Batch Size: 64, Num layer: 3 7790098 123.59 172.94 - -

RMSE Batch Size: 16, Num layer: 4 14867974 - - 123.95 167.75

Table 4.5: Performance on CUEE testing dataset with error in Watt/m2.
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Model Learning loss. Parameter setting Model parameters Train on AE Train on SE

MAE RMSE MAE RMSE

SUNSET MAE Dense Size: 1024, Div num filter: 1 26296497 2.67 3.91 - -

RMSE Dense Size: 1024, Div num filter: 2 13671897 - - 2.77 3.89

Unet MAE Batch Size: 128, Drop rate: 0.1 306120 2.19 3.15 - -

RMSE Batch Size: 128, Drop rate: 0.4 306120 - - 2.27 3.20

Solarnet MAE Batch Size: 16, Num layer: 4 14867974 2.91 4.06 - -

RMSE Batch Size: 16, Num layer: 4 14867974 - - 3.03 4.08

Table 4.6: Performance on SKIPP’D testing dataset with the error values in KW.

Model Learning loss. Parameter setting Model parameters Train on AE Train on SE

MAE RMSE MAE RMSE

SUNSET MAE Dense Size: 1024, Div num filter: 1 26296497 38.97 84.41 - -

RMSE Dense Size: 1024, Div num filter: 4 7367373 - - 45.04 86.24

Unet MAE Batch Size: 128, Drop rate: 0.4 306120 24.99 39.89 - -

RMSE Batch Size: 128, Drop rate: 0.4 306120 - - 24.08 41.02

Solarnet MAE Batch Size: 64, Num layer: 4 14867974 72.65 121.16 - -

RMSE Batch Size: 16, Num layer: 4 14867974 - - 65.03 106.86

Table 4.7: Performance on SIRTA testing dataset with the error values in Watt/m2.

(a) SUNSET: AE loss (b) SUNSET: SE loss

(c) Unet: AE loss (d) Unet: SE loss

Figure 4.8: CUEE Dataset: Solar irradiance forecasting results compared to actual values using the
SUNSET (a-b): (a) trained with AE loss, (b) trained with SE loss; and using the Unet model (c-d):
(c) trained with AE loss, (d) trained with SE loss.
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(a) SUNSET: AE loss (b) SUNSET: SE loss

(c) Unet: AE loss (d) Unet: SE loss

Figure 4.9: SKIPP’D Dataset: Solar irradiance forecasting results compared to actual values using the
SUNSET model (a-b): (a) trained with AE loss, (b) trained with SE loss; and Unet model (c-d):
(c) trained with AE loss, (d) trained with SE loss.

4.3.2 Training with processed data

This study trained SUNSET, Solarnet, and U-Net on SIRTA-processed data, which has undergone

RoI extraction and correction of distortion effects from the fisheye lens. We choose the best model from

the validation in Table 4.8, and evaluate the performance of the model in the testing in Table 4.9. The

experimental results indicate that the implemented approach did not lead to a significant enhancement

in model performance. A plausible explanation for this outcome is the utilization of low-resolution

images (64× 64 pixels) during the training phase. Such low-resolution inputs may result in the loss or

distortion of critical features necessary for accurate model predictions.

Validation dataset

Model Learning loss. Parameter setting Model parameters Train on AE Train on SE

MAE RMSE MAE RMSE

SUNSET MAE Dense Size: 1024, Div num filter: 1 26296497 43.07 86.38 - -

RMSE Dense Size:1024, Div num filter: 4 3237081 - - 46.20 84.76

Unet MAE Batch Size:128, Drop rate:0.4 306120 30.06 50.83 - -

RMSE Batch Size:128, Drop rate:0.4 306120 - - 30.40 51.10

Solarnet MAE Batch Size:16, Num layer: 4 14867974 67.24 115.49 - -

RMSE Batch Size:16, Num layer: 4 14867974 - - 67.67 108.31

Table 4.8: Performance on SIRTA validation dataset with the lowest error values.



CHAPTER 4. RESULTS AND DISCUSSION 37

Test dataset

Model Learning loss. Parameter setting Model parameters Train on AE Train on SE

MAE RMSE MAE RMSE

SUNSET MAE Dense Size: 1024, Div num filter: 1 26296497 42.91 88.45 - -

RMSE Dense Size:1024, Div num filter: 4 3237081 - - 45.86 85.65

Unet MAE Batch Size:128, Drop rate:0.4 306120 29.01 48.46 - -

RMSE Batch Size:128, Drop rate:0.4 306120 - - 29.66 48.12

Solarnet MAE Batch Size:16, Num layer: 4 14867974 66.79 116.81 - -

RMSE Batch Size:16, Num layer: 4 14867974 - - 67.50 110.16

Table 4.9: Performance on SIRTA testing dataset.

4.3.3 Training with cloud mask and foreground

This study aims to enhance model performance by extracting cloud masks using various approaches

and training the SUNSET model on the first six months of the SIRTA dataset because of limitation of

CPU RAM. The experiments are conducted using the only one configuration hyperparameters outlined

in section 3.8 and are based on four different cloud masking strategies.

• Experiment 1 : adding 1 channel of cloud mask from section 3.3.1.

• Experiment 2 : adding 3 channels of cloud foreground from section 3.3.2.

• Experiment 3 : adding 1 channel of soft-decision mask α from comb-on eq. (3.3).

• Experiment 4 : adding 3 channels of cloud foreground Icloud from the comb-on eq. (3.3).

Results.

• Table 4.10 demonstrates that none of the experiments resulted in an improvement in MAE.

However, with respect to RMSE, Experiments 2 and 3 appear to show a slight decrease.

Evaluation
Learning loss: MAE

Original Experiment 1 Experiment 2 Experiment 3 Experiment 4

MAE 32.74 36.51 33.93 33.28 36.79

RMSE 76.25 78.80 75.77 75.22 80.22

Table 4.10: Comparison of MAE across different experiments

• Table 4.11 illustrates that all experiments led to improvements in both MAE and RMSE, with

Experiment 1 showing particularly notable enhancements.

Evaluation
Learning loss: RMSE

Original Experiment 1 Experiment 2 Experiment 3 Experiment 4

MAE 42.91 34.76 38.83 36.82 39.12

RMSE 79.03 73.32 77.06 74.08 76.69

Table 4.11: Comparison of RMSE across different experiments



CHAPTER 4. RESULTS AND DISCUSSION 38

The results of Experiment 1 indicate the most significant improvement in model performance with

respect to RMSE, achieving approximately a 3% reduction in RMSE loss compared to the optimal RMSE

observed in the original dataset.

However, in terms of MAE, adding cloud masking channels did not lead to significant improvement.

This may be because the additional channels help reduce large spikes in error (as reflected by the RMSE),

but the model still produces consistent small deviations, which MAE is more sensitive to.



Chapter 5

Conclusion

This study explored the CUEE, SKIPP’D, and SIRTA datasets, each with its unique characteristics.

Various models, including SUNSET, Unet, and Solarnet, were trained on the CUEE and SKIPP’D

datasets to compare the performance for solar irradiance forecasting. We have also done data preparation

to enhance models, including: RoI extraction to filter out irrelevant image parts, lens distortion correction

to fix the disproportionate of image sizes, extraction of the sun’s position in sky images, cloud extraction,

and cloud masking from sky images to be used as input variables for model training.

The results from training the forecasting models demonstrate that SUNSET consistently achieves

the best performance in the forecasting task across all three datasets. This superior performance can

be attributed to its ability to leverage both spatial information from sky images and temporal patterns

from time-series data. To further enhance the SUNSET model’s performance on the SIRTA dataset,

this study incorporated an additional cloud mask channel method from [16], resulting in an approximate

3% improvement in RMSE compared to the original sky image data, but in terms of MAE, the addition

of cloud mask and cloud foreground channels did not lead to a significant improvement. This suggests

that the benchmark system needs to be further improved, as the current training and evaluation in this

part can handle no more than 6 months of data due to high CPU RAM requirement.

39
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5.1 Operation plan

Work process
2024 2025

Aug Sep Oct Nov Dec Jan Feb Mar Apr

1. Exploratory data analysis

2. Processing sky images

3. Extracting additional data such as

cloud volume and cloud marking

4. Train and evaluate neural network

architectures on three datasets

5. Train and evaluate neural network

architectures on processed SIRTA dataset

6. Train and evaluate neural network

architectures on SIRTA with additional data

7. Write an academic report

blue : Current blue : Plan

5.2 Problems, obstacles, and solutions

Solar irradiance forecasting is challenging due to the variability of cloud formations, atmospheric con-

ditions, and differences in geographical locations. This study aims to introduce deep learning techniques

to enhance performance, particularly by processing images and extracting more additional data.

One obstacle is that the limited memory on the CPU and GPU RAM poses a significant challenge

in the handling of high-resolution images. Consequently, the original images, stored in the database at

full resolution, must be downscaled to 64×64 pixels for model training. This reduction in resolution can

lead to a loss of image quality and critical features, which may affect the accuracy of the results and

complicate their interpretation. To overcome this limitation, an on-the-fly data generation approach can

be employed. By leveraging GPU batch processing, this method can be further improved for real-time

image handling and cloud detection, optimizing resource usage while preserving essential details during

training.
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